3.1.69 \(\int x^2 (d-c^2 d x^2)^{3/2} (a+b \text {ArcSin}(c x)) \, dx\) [69]

Optimal. Leaf size=265 \[ \frac {b d x^2 \sqrt {d-c^2 d x^2}}{32 c \sqrt {1-c^2 x^2}}-\frac {7 b c d x^4 \sqrt {d-c^2 d x^2}}{96 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^6 \sqrt {d-c^2 d x^2}}{36 \sqrt {1-c^2 x^2}}-\frac {d x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{16 c^2}+\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))+\frac {d \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{32 b c^3 \sqrt {1-c^2 x^2}} \]

[Out]

1/6*x^3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))-1/16*d*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2+1/8*d*x^3*(
a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)+1/32*b*d*x^2*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-7/96*b*c*d*x^4*(-
c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/36*b*c^3*d*x^6*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/32*d*(a+b*arc
sin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c^3/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 265, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {4787, 4783, 4795, 4737, 30, 14} \begin {gather*} -\frac {d x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{16 c^2}+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))+\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {d \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{32 b c^3 \sqrt {1-c^2 x^2}}+\frac {b d x^2 \sqrt {d-c^2 d x^2}}{32 c \sqrt {1-c^2 x^2}}-\frac {7 b c d x^4 \sqrt {d-c^2 d x^2}}{96 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^6 \sqrt {d-c^2 d x^2}}{36 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(b*d*x^2*Sqrt[d - c^2*d*x^2])/(32*c*Sqrt[1 - c^2*x^2]) - (7*b*c*d*x^4*Sqrt[d - c^2*d*x^2])/(96*Sqrt[1 - c^2*x^
2]) + (b*c^3*d*x^6*Sqrt[d - c^2*d*x^2])/(36*Sqrt[1 - c^2*x^2]) - (d*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))
/(16*c^2) + (d*x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/8 + (x^3*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x])
)/6 + (d*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(32*b*c^3*Sqrt[1 - c^2*x^2])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4787

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSin[c*x])^n/(f*(m + 2*p + 1))), x] + (Dist[2*d*(p/(m + 2*p + 1)), Int[(
f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Dist[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(
1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps

\begin {align*} \int x^2 \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{2} d \int x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int x^3 \left (1-c^2 x^2\right ) \, dx}{6 \sqrt {1-c^2 x^2}}\\ &=\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int x^3 \, dx}{8 \sqrt {1-c^2 x^2}}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (x^3-c^2 x^5\right ) \, dx}{6 \sqrt {1-c^2 x^2}}\\ &=-\frac {7 b c d x^4 \sqrt {d-c^2 d x^2}}{96 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^6 \sqrt {d-c^2 d x^2}}{36 \sqrt {1-c^2 x^2}}-\frac {d x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{16 c^2}+\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{16 c^2 \sqrt {1-c^2 x^2}}+\frac {\left (b d \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{16 c \sqrt {1-c^2 x^2}}\\ &=\frac {b d x^2 \sqrt {d-c^2 d x^2}}{32 c \sqrt {1-c^2 x^2}}-\frac {7 b c d x^4 \sqrt {d-c^2 d x^2}}{96 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^6 \sqrt {d-c^2 d x^2}}{36 \sqrt {1-c^2 x^2}}-\frac {d x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{16 c^2}+\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{32 b c^3 \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 170, normalized size = 0.64 \begin {gather*} \frac {d \sqrt {d-c^2 d x^2} \left (9 a^2+b^2 c^2 x^2 \left (9-21 c^2 x^2+8 c^4 x^4\right )-6 a b c x \sqrt {1-c^2 x^2} \left (3-14 c^2 x^2+8 c^4 x^4\right )+6 b \left (3 a+b c x \sqrt {1-c^2 x^2} \left (-3+14 c^2 x^2-8 c^4 x^4\right )\right ) \text {ArcSin}(c x)+9 b^2 \text {ArcSin}(c x)^2\right )}{288 b c^3 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(d*Sqrt[d - c^2*d*x^2]*(9*a^2 + b^2*c^2*x^2*(9 - 21*c^2*x^2 + 8*c^4*x^4) - 6*a*b*c*x*Sqrt[1 - c^2*x^2]*(3 - 14
*c^2*x^2 + 8*c^4*x^4) + 6*b*(3*a + b*c*x*Sqrt[1 - c^2*x^2]*(-3 + 14*c^2*x^2 - 8*c^4*x^4))*ArcSin[c*x] + 9*b^2*
ArcSin[c*x]^2))/(288*b*c^3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.27, size = 682, normalized size = 2.57

method result size
default \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{6 c^{2} d}+\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{24 c^{2}}+\frac {a d x \sqrt {-c^{2} d \,x^{2}+d}}{16 c^{2}}+\frac {a \,d^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{16 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} d}{32 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-32 i \sqrt {-c^{2} x^{2}+1}\, x^{6} c^{6}+32 c^{7} x^{7}+48 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}-64 c^{5} x^{5}-18 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+38 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-6 c x \right ) \left (i+6 \arcsin \left (c x \right )\right ) d}{2304 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-i+2 \arcsin \left (c x \right )\right ) d}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i x^{2} c^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (11 i+24 \arcsin \left (c x \right )\right ) \cos \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (7 i+48 \arcsin \left (c x \right )\right ) \sin \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i x^{2} c^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (i+8 \arcsin \left (c x \right )\right ) \cos \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i x^{2} c^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \sin \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(682\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

-1/6*a*x*(-c^2*d*x^2+d)^(5/2)/c^2/d+1/24*a/c^2*x*(-c^2*d*x^2+d)^(3/2)+1/16*a/c^2*d*x*(-c^2*d*x^2+d)^(1/2)+1/16
*a/c^2*d^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/32*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^
2+1)^(1/2)/c^3/(c^2*x^2-1)*arcsin(c*x)^2*d-1/2304*(-d*(c^2*x^2-1))^(1/2)*(-32*I*(-c^2*x^2+1)^(1/2)*x^6*c^6+32*
c^7*x^7+48*I*(-c^2*x^2+1)^(1/2)*x^4*c^4-64*c^5*x^5-18*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+38*c^3*x^3+I*(-c^2*x^2+1)^(
1/2)-6*c*x)*(I+6*arcsin(c*x))*d/c^3/(c^2*x^2-1)+1/256*(-d*(c^2*x^2-1))^(1/2)*(2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2
*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*(-I+2*arcsin(c*x))*d/c^3/(c^2*x^2-1)+1/4608*(-d*(c^2*x^2-1))^(1/2)*(I*x^2
*c^2-c*x*(-c^2*x^2+1)^(1/2)-I)*(11*I+24*arcsin(c*x))*cos(5*arcsin(c*x))*d/c^3/(c^2*x^2-1)-1/4608*(-d*(c^2*x^2-
1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(7*I+48*arcsin(c*x))*sin(5*arcsin(c*x))*d/c^3/(c^2*x^2-1)-1/512
*(-d*(c^2*x^2-1))^(1/2)*(I*x^2*c^2-c*x*(-c^2*x^2+1)^(1/2)-I)*(I+8*arcsin(c*x))*cos(3*arcsin(c*x))*d/c^3/(c^2*x
^2-1)+3/512*(-d*(c^2*x^2-1))^(1/2)*(I*x^2*c^2-c*x*(-c^2*x^2+1)^(1/2)-I)*sin(3*arcsin(c*x))*d/c^3/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

b*sqrt(d)*integrate(-(c^2*d*x^4 - d*x^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1
)), x) + 1/48*a*(2*(-c^2*d*x^2 + d)^(3/2)*x/c^2 - 8*(-c^2*d*x^2 + d)^(5/2)*x/(c^2*d) + 3*sqrt(-c^2*d*x^2 + d)*
d*x/c^2 + 3*d^(3/2)*arcsin(c*x)/c^3)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^4 - a*d*x^2 + (b*c^2*d*x^4 - b*d*x^2)*arcsin(c*x))*sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x)),x)

[Out]

Integral(x**2*(-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

integrate((-c^2*d*x^2 + d)^(3/2)*(b*arcsin(c*x) + a)*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2),x)

[Out]

int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________